Ensuring the Safety of On-Road Self-Driving Car Testing

Prof. Philip Koopman

Carnegie Mellon University

PA AV Summit
April 9, 2018

© 2018 Philip Koopman
A tragic death has occurred
 ● How can we mitigate risk in the future?

Activities that do NOT improve safety of autonomous vehicle (AV) testing:
 ● Assigning blame
 ● Arguing that delaying deployment costs lives
 ● Finding out why autonomy failed (surprise!)

We should NOT sacrifice at-risk population for sake of progress
 ● Instead, make progress with safe AV testing platforms
 – AV testing platform = autonomy + safety driver + safety support technology
Safety Case:
A structured written argument, supported by evidence, justifying system is acceptably safe for intended use.

Example structure:
- Safety Reason 1 / evidence for reason 1
- Safety Reason 2 / evidence for reason 2
- Safety Reason 3 / evidence for reason 3
- ...

How Do You Know It’s Safe Enough?

Carnegie Mellon University
Essential observations for AV testing

- We care about safety of test vehicle
 - Autonomy is immature – that’s why there is a safety driver!
- Appropriately safe does not mean perfect

AV testing safety goal: no worse than human-driven vehicle

1. The safety driver is paying adequate attention
2. The safety driver has time to react if needed
3. When the safety driver reacts, the vehicle will respond properly

https://goo.gl/YUC5oU
“We have a safety driver” doesn’t cut it as an argument

Driver Dropout is well known
- Airline pilots (even if there are two!)
- 1990s-era Automated Highway System
- Can’t just assume alert safety drivers

Questions to ask about safety drivers:
- Are they trained?
- How will you ensure they are alert/awake?
- How will you monitor on-road performance?
Safety Driver Tasks:
- Mental model of “normal” AV
- Detect abnormal AV behavior
- React & recover if needed

Example: obstructed lane
- Does driver know when to take over?
- Can driver brake in time?
 - Or is sudden lane change necessary?

Example: two-way traffic
- What if AV commands sudden left turn into traffic?
Keeping the Safety Driver in the Loop

- **Supervisory human process:**
 - *First* detect AV problem; *then* react

- **Driver awareness of AV state**
 - Does AV see a pedestrian?
 - Is AV planning to avoid obstacle?
 - Is AV accurately displaying its intended plan?

- **Driver situational awareness**
 - Must intervene before it’s too late to recover
Does The Big Red Button Work?

- Claim: safety driver can over-ride autonomy

- Is this safe?
 - DRIVER
 - BIG RED BUTTON
 - AUTONOMY COMPUTER
 - CAR COMPUTER
 - ENGINE, BRAKES, STEERING

- Is this?
 - AUTONOMY COMPUTER
 - DRIVER
 - BIG RED BUTTON
 - SWITCH
 - CAR COMPUTER
 - ENGINE, BRAKES, STEERING

- Use accepted practices to ensure disengagement safety
 - For example, safety standard (ISO 26262) for disengagement mechanism
Example Safety Argument Sketch

Safety driver(s) attentive
- Safety driver training, qualification
- Real-time driver alertness monitoring
- Review of driver performance data

Effective safety driver reaction
- Leave margin for recovery
- Don’t paint human driver into a corner

AV disengagement mechanism really works
- Follows safety engineering practices
Implementation Considerations

Minimal regulatory intervention approach:
- AV testers provide the safety argument
 - Measured against criteria they themselves create
- Who decides sufficiency?
 - Perhaps public review and litigation exposure

Key features of this safety approach:
- Proprietary autonomy information not revealed
- Designer flexibility in choosing approach
- Emphasizes adequate testing safety, not AV perfection
Summary

Proposed Safety Goal:
AV testing as safe as a human-driven vehicle
1. Show that the safety driver is paying adequate attention
2. Show that the safety driver has time to react if needed
3. Show that AV disengagement/safing actually works

QUESTIONS?